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We calculate the ac conductance and the finite-frequency nonsymmetrized noise in interacting quantum
wires and single-wall carbon nanotubes in the presence of an impurity. We observe a strong asymmetry in the
frequency spectrum of the nonsymmetrized excess noise, even in the presence of the metallic leads. We find
that this asymmetry is proportional to the differential excess ac conductance of the system, defined as the
difference between the ac differential conductances at finite and zero voltage, and thus disappears for a linear
system. In the quantum regime, for temperatures much smaller than the frequency and the applied voltage, we
find that the emission noise is exactly equal to the impurity partition noise. For the case of a weak impurity we
expand our results for the ac conductance and the noise perturbatively. In particular, if the impurity is located
in the middle of the wire or at one of the contacts, our calculations show that the noise exhibits oscillations
with respect to frequency, whose period is directly related to the value of the interaction parameter g.
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I. INTRODUCTION

Electronic transport is an important tool for accessing the
physical properties of mesoscopic systems. Besides the aver-
age current flowing through a system, information can also
be extracted from the fluctuations �noise� in the current. For
example, the zero-frequency noise has been used to prove the
fractionalized nature of the quasiparticles in fractional quan-
tum Hall liquids.1 Moreover, the finite-frequency noise con-
tains important information about the statistics,2 as well as
about the typical energy scales and the dynamics of
excitations3 in a mesoscopic system. The symmetrized finite-
frequency noise corresponds to the Fourier transform of the
symmetrized correlator of two noncommuting current opera-
tors at two different time points. This noise is even with
respect to frequency. Nevertheless, recent experiments have
allowed access to the nonsymmetrized noise,4,5 and thus to
the emission and the absorption components of the noise
spectrum.6–8 What is usually measured in these experiments
is the excess nonsymmetrized noise, defined as the difference
between the nonsymmetrized noise at finite voltage and at
zero voltage. For noninteracting systems, in the framework
of the scattering approach, the total nonsymmetrized noise is
not even with respect to frequency, but the excess nonsym-
metrized noise is, hence the emission excess noise and the
absorption excess noise are identical.

Few theoretical papers have addressed the effect of inter-
actions on the finite-frequency symmetrized noise, which has
been studied for instance for mesoscopic capacitors9 and in
the Coulomb blockade regime.10 It has also been considered
in the case of Luttinger liquids �LL�, where the interactions
are very strong and can give rise to exotic phenomena such
as charge fractionalization, spin-charge separation, and frac-
tional statistics. The symmetrized high-frequency noise in
chiral LL �such as fractional quantum Hall effect �FQHE�
edge states� has been studied in Ref. 11; for nonchiral LL
�such as quantum wires and carbon nanotubes connected to

metallic leads�, it has also been studied in Refs. 12–15. In
those works it was shown that, while the charge fractional-
ization is still present16,17 and can be extracted from the noise
at high frequencies, the presence of the metallic leads ob-
scures it in the zero-frequency noise. It was also found that
the interactions play an important role for the entire range of
frequencies, even in the zero-frequency limit when the noise
decays as a power law of the applied voltage.18,19

Even fewer theoretical works have dealt with the nonsym-
metrized finite-frequency noise in the presence of interac-
tions. For instance this has been investigated in cotunneling
between two quantum dots,20 and for chaotic cavities.21 It
has also been analyzed for chiral LL such as FQHE edge
states,22 where the nonsymmetrized excess noise was found
to be asymmetric. The main purpose of this paper is to in-
vestigate the finite-frequency nonsymmetrized noise in non-
chiral Luttinger liquids connected to reservoirs. We show
that the asymmetry is determined by the ac differential con-
ductance, which to our knowledge has not been so far inves-
tigated for a LL.

A. ac conductance of a LL connected to metallic leads

The ac differential conductance has the advantage that,
while containing significant information about the system, it
is easier to measure than the high-frequency noise. However,
this conductance also has its drawbacks compared to the
finite-frequency noise: it can only be defined in the quasi-
equilibrium regime when the frequency is smaller than the
inverse of the inelastic scattering times �in in the reservoirs.
This ensures that the time scales one can explore are longer
than the time �in required for the reservoirs to relax into its
quasiequilibrium state. In quantum wires fabricated using
two-dimensional electron gases the transport is coherent if
L�vF�in, and the ac conductance gives information on a
regime of relatively small frequencies: ��1 /�in��L
�vF /L. This limitation of the ac conductance can be relaxed
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if the reservoir has a sufficiently short �in and is of a different
material than the one-dimensional wire �for carbon nano-
tubes�. Here we show that its real part can also be obtained
from the asymmetry in the nonsymmetrized excess noise,
without limitation on frequency in this case.

The ac conductance of a clean LL connected to metallic
leads has been studied theoretically in Ref. 16. Also, the
current in a chiral infinite LL in the presence of a finite ac
voltage and a single impurity has been studied in Refs. 23
and 24. Experimentally the ac conductance of chiral edges in
the integer quantum Hall regime has been studied in Ref. 25.
In this paper, we focus on the nonlinear dependence of the ac
conductance on the applied dc voltage in the limit of a van-
ishing ac modulation. We analyze a single-channel interact-
ing wire of length L connected to metallic leads using the
inhomogeneous LL model �see Fig. 1�. A weak impurity is
responsible for the appearance of a backscattering current
when a voltage difference is applied between the leads. We
analyze the effect of the impurity using the out-of-
equilibrium Keldysh formalism.26 The single impurity sce-
nario may correspond to either a bulk impurity or to an im-
purity located at one of the contacts. While in general
nanotubes are clean, and most of the backscattering comes
from the imperfect contacts, the situation of a single bulk
impurity can be achieved experimentally using for example
an unbiased scanning tunnel microscope �STM� tip. In this
case the effect of the bulk impurity will dominate over the
effect of the impurities at the contacts.16,27,28 The advantage
of a single impurity is that we can disentangle much easier
the effects of interactions. Indeed, in systems with two im-
purities, other effects such as Fabry-Perot interferences come
into play and make the analysis much harder.14,29 The for-
malism used here to describe the ac conductance is derived
in Ref. 30. We find that the excess ac conductance, defined as
the difference between the ac conductance at finite and zero
dc voltage, while being zero for a linear system �in the ab-
sence of interactions�, has a rich nonlinear behavior domi-
nated by impurity effects for an interacting nonchiral LL.

B. Finite-frequency nonsymmetrized noise

Besides the ac conductance, we focus also on the analysis
of the noise. We start by analyzing the zero-frequency noise,
and we note that if the applied voltage is much smaller than
the characteristic energy associated with the length of the
tube �L=vF /gL �short-wire limit�, both the noise and the
current are linear with voltage. Moreover, if the voltage in-
creases above �L, the noise displays finite-size features �os-
cillations with respect to voltage�, as well as infinite

interacting-wire features �a power-law decay similar to the
one mentioned in Refs. 18 and 19�.

Subsequently we analyze the dependence of the nonsym-
metrized noise on frequency. As mentioned before, the non-
symmetrized excess noise was shown to be asymmetric for
FQHE edge states.22 The main purpose of this paper is to
investigate whether the nonsymmetrized excess noise is also
asymmetric for quantum wires and carbon nanotubes in the
presence of the metallic leads, and to identify the origin of
this asymmetry. We find that the excess noise is indeed
asymmetric, and we find that its asymmetry is given by the
excess differential ac conductance. In analogy with the ex-
cess noise, this is defined as the difference between the dif-
ferential conductances at finite voltage and at zero voltage.
Our observation is consistent with a generalized Kubo
formula.30,31 Thus, we can trace the asymmetry in the spec-
trum of the noise to the nonlinearity of the system in the
presence of interactions.

Moreover, if the impurity is in the middle or at one end of
the wire, the noise exhibits oscillations whose periodicity is
inversely proportional to the value of the fractional charge.
The presence of oscillations is the consequence of the quasi-
Andreev reflection of an electron at the interface between the
interacting quantum wire and the metallic leads.16,32 The
multiple quasi-Andreev reflections give rise to Fabry-Perot
type of processes, and to an oscillating behavior of the ac
conductance, even in the absence of impurity scattering.16,33

The existence of the oscillations is a crucial difference be-
tween the LL model and an alternative model, the dynamical
Coulomb blockade �DCB�,34 which was shown to give rise to
the same type of power-law I–V decay as the LL theory.35

The presence of the oscillations in the dependence of the
noise and ac conductance on frequency, as well as in the
dependence of the backscattering current on voltage,36 will
be a clear signature of LL physics and will allow one to
distinguish between the LL model and the DCB model.

While for a short wire the noise deviates only slightly
from the noninteracting limit, when the length of the tube is
much larger than the inverse of the applied voltage the sig-
nature of the interactions is much more pronounced. In this
case the envelope of the oscillations in the noise is given by
the form of the nonsymmetrized noise for an infinite LL with
the same interaction parameter. Also, like for symmetrized
noise,13 the average of the emission noise over the first half-
oscillation allows one to extract the value of the fractional
charge in the system, in a broader range of experimental
conditions than the average of the symmetrized noise.

This paper is organized as follows. In Sec. II we present
the model we use to describe the quantum wire connected to
metallic leads. In Sec. III we present the differential ac con-
ductance of the wire. In Sec. IV, we present the excess non-
symmetrized noise, and relate the asymmetry in the noise to
the ac conductance. In Sec. V we particularize the results
obtained in Secs. III and IV to the limit of a small impurity,
when the ac conductance and the noise can be analyzed per-
turbatively. In Sec. VI we discuss our results, in Sec. VI A
we show that the average of the emission spectrum allows
one to obtain the value of the fractional charge, in Sec. VI B
we present the ac conductance and the nonsymmetrized
noise on a gate, in Sec. VI C we generalize our results for a
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FIG. 1. A quantum wire with an impurity located at position xi,
adiabatically coupled to metallic leads and to a metallic gate at
chemical potential �3=eV3. The leads are held at different chemical
potentials �1=eV1 and �2=eV2.
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nanotube that has four channels of conduction, and in Sec.
VI D we discuss the relevant experimental regimes. We con-
clude in Sec. VII. The details of the calculation are presented
in the Appendix.

II. MODEL

A quantum wire connected to metallic leads is described
by the Hamiltonian

H = H0 + HB + HV, �1�

where H0 describes the interacting wire and the leads in the
framework of the inhomogeneous LL model, HB describes
the effects of the impurity, and HV describes the chemical
potential applied to the wire. Explicitly, using the bosonic
field � related to the density through �=�x� /	, and letting

 be the conjugate field of �, ���x� ,
�y��= i��x−y�, one
has

H0 =
�vF

2
�

−



dx�
2 +
1

g2�x�
��x��2� , �2�

HB = � cos�	4	��xi,t� + 2kFxi� , �3�

HV = − �
−

 dx
		

��x��x��x,t� . �4�

The interaction parameter g�x� is space dependent and its
value is g in the bulk of the wire, and 1 in the leads.16,37 For
convenience, the end points of the wire are denoted by x1
=−L /2 and x2=L /2, while the impurity position is chosen to
be xi. The backscattering amplitude is denoted by �. A sche-
matic view of the system is shown in Fig. 1.

The function ��x�=eV�x� in Eq. �4� describes the external
chemical potential, and is taken to be piecewise constant:13,16

��x� = 
�1 for x � x1

�3 for x1 � x � x2

�2 for x � x2,
� �5�

where �3=eV3 is controlled by the gate potential, and we
will denote V=V2−V1. The specific profile of the dc electric
field can be inferred using E�x�=−�xV�x�. Notice that the
impurity also contributes in principle to the potential profile,
by causing a discontinuous voltage drop at the impurity site
due to the coupling between the long-wavelength part of the
density and the impurity through the forward scattering term;
however, for a static impurity this should not affect our re-
sults. Also the local effective electrostatic potential is modi-
fied by the backscattering of quasiparticles at the impurity
site �see, e.g., Ref. 38�, but only the external potential is
relevant for the quantities of interest in our analysis.

In bosonization, the current operator is related to the
bosonic field � through

j�x,t� =
e

		
�t��x,t� . �6�

In our analysis we will focus mainly on the currents evalu-
ated at the contacts x1, x2 while adopting the convention that

outgoing currents are positive. Thus we denote

jn�t� = �− 1�nj�xn,t� ,

for n=1,2, and In�t�= �jn�t�.
The differential ac conductance of the wire is defined as

the response of the system to an infinitesimal ac modulation
in the bias of the reservoirs: Vm→Vm�t�=Vm+Vm�t�, with
Vm�t�=vm cos �t. Thus the ac conductance Gnm���
=�dtei�tGnm�t� is defined as the Fourier transform of the
functional derivative Gnm�t�, where

Gnm�t − t�� = � �In�t�
�Vm�t���Vm=0

. �7�

As we show here, at low temperatures the ac conductance
Gnm of a LL has a nonlinear dependence on the applied dc
chemical potentials.

The ac conductance of the wire can indeed be related to
the nonlocal ac conductivity.16 To show this, one notes that
the external time-dependent electric field profile correspond-
ing to the piecewise potential landscape in Eq. �5� is given
by

E�x,t� = �
m=1,2

�− 1�m�Vm�t� − V3�t����x − xm� . �8�

The nonlocal differential ac conductivity is defined as the
linear response of the current to an infinitesimal ac modula-
tion of the electric field, E�x�→E�x�+E�x , t�, where E�x , t�
=��x�cos �t, at a finite value of E:

��x,y,t − t�� = � ��j�x,t�
�E�y,t�� �E=0

. �9�

Correspondingly we have ��x ,y ,��=�dtei�t��x ,y , t�. We
can thus see that one can express the ac conductance in Eq.
�7� as

Gnm��� = �− 1�n+m��xn,xm,�� . �10�

We should note that in the case of a time-dependent cur-
rent flowing through the system, the conservation of current
does not hold, i.e., I1�t�+ I2�t��0, and a time-dependent
charge accumulates on the wire. This induces similar fluctua-
tions of the charge on a gate capacitatively coupled to the
wire, the current on the gate is equal to I1+ I2, thus ensuring
formally current conservation. However, besides its role in
screening the Coulomb interactions in the wire, the presence
of the gate has no direct effect on the values of the various
currents flowing through the wire. The gate will be discussed
in more detail in Sec. VI B.

The other quantity of interest of this analysis is the finite-
frequency nonsymmetrized noise. This is defined as

Snm��� = �
−



dtei�t��jm�0��jn�t� , �11�

where n and m refer to the reservoirs where the current is
measured and �jn�t�= jn�t�− �jn.

The finite-frequency symmetrized noise on the other hand
is defined as
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Snm
+ ��� =

1

2
�

−



dtei�t���jm�0��jn�t� + ��jn�t��jm�0�� .

�12�

III. DIFFERENTIAL AC CONDUCTANCE

We will first focus on the ac conductance of the wire. As
shown above we can relate the ac conductance of the wire
with the nonlocal ac conductivity ��x ,y ,�� evaluated be-
tween specific values of x and y. In turn, the ac nonlocal
conductivity ��x ,y ,�� defined in Eq. �9� needs to be ex-
pressed in terms of microscopic correlators. For this purpose,
in the equilibrium case, when eV�kBT, one can use simply
the Kubo formula, and ��x ,y ,�� coincides with the nonlocal
conductivity discussed already in Refs. 13, 16, and 22. In
this regime a Dyson-type equation was derived:

��x,y,�� = �0�x,y,�� −
h2

e4 �0�x,xi,��GB����0�xi,y,�� .

�13�

We should note that �0, the nonlocal conductivity without
impurity, describes the propagation from the measuring point
to the impurity point, while GB describes the pure back-
scattering conductivity at the impurity position xi. Notice that
�0�x ,y ,�� does not depend on the voltage V as the system is
purely linear in the absence of an impurity, but depends only
on the frequency �, and on the scale �L=vF /gL associated
with the finite size of the wire. The precise form of �0 for x
and y in the wire or at the contacts �i.e., �x�, �y��L /2� has
been calculated previously:16

�0�x,y,�� = g
e2

h �ei��/�L��x−y�/L +
�

e−2i�/�L − �2

��
r=�

��eir��/�L��x−y�/L + ei��/�L��r�x+y�/L−1��� ,

�14�

where �= �1−g� / �1+g� is the reflection coefficient for the
quasi-Andreev reflection at the contacts, and L is the length
of the wire. We should note that at zero frequency
�0�x ,y ,��=e2 /h, independent of position, and equal to the
conductance of noninteracting single-channel one-
dimensional system.

On the other hand, GB, besides the impurity position xi
and temperature T, depends also on the backscattering am-
plitude �. Also, while it does not depend on voltage in the
linear regime eV� max�kBT ,���, it will depend on it in the
nonlinear regime, eV� max�kBT ,���. It is given by

GB��� =
1

��
�

0



dt�ei�t − 1���jB�t�, jB�0�� . �15�

Here, the backscattering current operator is defined as

jB�t� = −
e

�	4	

�HB��,t�
���xi,t�

= �
e

�
sin�	4	��xi,t� + 2kFxi + eVt/�� . �16�

This form for the backscattered current operator was ob-
tained using a time-dependent translation of � in HB incor-
porating the effect of the applied voltage V.13 Its average
value is denoted by IB�t�= �jB�t�. We should stress that it is
important to distinguish between the total current operator
defined in Eq. �6� and the backscattered current defined
above. The relation between the average values of these cur-
rents becomes simple in the dc regime, when their values are
time independent: I2=−I1=Ve2 /h− IB, as sketched in the lin-
ear regime in Refs. 16 and 27, and in the nonlinear regime in
Refs. 13 and 36. However, the time-dependent properties as-
sociated with these two current operators, such as the ac
conductivities and noise spectra, are different.

On the other hand, for the nonequilibrium case eV�kBT,
it turns out that a general out-of-equilibrium Kubo formula
allows one to relate the ac conductivity to the retarded
current-current correlation function, even in the presence of a
finite dc bias. This was proved for the case of homogeneous
conductivity31 with the requirement of a stationary density
matrix. This misses, however, the effects of the nonlocality,
which are important in a mesoscopic context. A simpler dem-
onstration, not constrained by the stationarity requirement,
and valid more generally for any finite mesoscopic nonlinear
system, is presented in Ref. 30. Thus the ac conductivity is
shown to verify the Dyson equation presented in Eq. �13�,
with the sole difference that in this case GB has an implicit
dependence on the voltage V. This implies that the ac con-
ductance Gmn defined in Eq. �7� for a quantum wire in the
presence of an impurity can be obtained directly using Eq.
�13�. While an analytic calculation of GB cannot be done for
all impurity strengths, the conductance can be calculated per-
turbatively for the case of a small impurity. The perturbative
analysis of the ac conductance is presented in Sec. V.

IV. NONSYMMETRIZED NOISE

We will now present our results for the noise in a quantum
wire in the presence of an impurity, and connect it to the ac
conductance. We will discuss some general considerations
for the noise, which are independent of the strength of the
impurity potential. While it is important to understand these
general aspects, same as for the ac conductance, the detailed
form of the noise dependence on frequency cannot be ob-
tained exactly, but only by using a perturbative expansion in
the limits when the impurity is very small or very large,
respectively. The perturbative analysis of the very small im-
purity situation will be presented in detail in Sec. V.

Notice first that for an applied voltage V much smaller
than temperature �in equilibrium� the noise is given by

Snm
0 ��� = 2��N���Re�Gnm����V=0,
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Snm
0+ ��� = ���1 + 2N����Re�Gnm����V=0, �17�

where N���= �coth��� /2kBT�−1� /2. This is in agreement
with the fluctuation-dissipation theorem �FDT�.

For arbitrary voltages, temperatures, and frequencies, as
well as for any impurity strength, we find the total noise to
be

Snm��� = 2��N���Re�Gnm
0 ���� +

h2

e4 Gni
0 ���SB���Gim

0 �− ��

− 2
h2

e4 ��N����Re�Gni
0 ����GB�− ��Gim

0 �− ��

+ Gni
0 ���GB���Re�Gim

0 �− ���� , �18�

where GB was defined in Sec. III and SB is the nonsymme-
trized backscattering noise

SB��� = �
−



��jB�0��jB�t�ei�tdt , �19�

where �jB�t�= jB�t�− �jB.
We should mention a nontrivial check satisfied by Eq.

�18�, which has more general and important consequences:
the noise verifies a generalized out-of-equilibrium Kubo-type
relation,30

Snm
− ��� � Snm��� − Snm�− �� = − 2�� Re�Gnm���� .

�20�

The first consequence of this relation is that if one has
access to the emission noise, one can deduce the absorption
noise by using the ac conductance discussed in Sec. III. Re-
versely, if one measures the emission and the absorption
noises, one can extract the ac conductance at an arbitrary
frequency, not necessarily smaller than the inverse of the
inelastic scattering time in the reservoirs. This provides an
advantage over the case of a direct ac measurement.16

The second consequence is that we can write the noise as
a combination of a symmetric Snm

+ ��� and antisymmetric part
Snm

− ���, where the symmetric component was defined in Eq.
�12�, and can be related to the total noise by Snm

+ ���
= �Snm���+Snm�−��� /2. Thus the difference between the
symmetrized noise �computed in Ref. 13� and the nonsym-
metrized noise comes from the real part of the ac conduc-
tance which is explored here for the case of a LL:

Snm��� = Snm
+ ��� − �� Re�Gnm���� . �21�

The third consequence of this out-of-equilibrium FDT re-
lation is that the excess noise, defined as the difference be-
tween the noise at finite bias and the noise at V=0, while
symmetric for a linear system, becomes asymmetric for a
nonlinear interacting system.30 We find the excess noise to be
given by

�Snm��� = �Snm
+ ��� − �� Re��Gnm���� , �22�

where �Gnm���=Gnm���−Gnm��� �V=0 is the excess ac con-
ductance, and �Snm

+ ��� is the symmetrized excess noise. For
a linear system, the ac conductance is independent of volt-
age, thus �Gnm���=0, and the nonsymmetrized excess noise

is equal to the symmetrized excess noise and is therefore
even in frequency. However, if the ac conductance is voltage
dependent, which is the case if the system is nonlinear, �Gnm
is nonzero and the nonsymmetrized excess noise is nonsym-
metric.

It is important to note two other properties of our results
that hold exactly in the quantum regime ���kBT, for any
impurity strength. For positive frequencies the factor N���
vanishes on the right-hand side of Eq. �18�. Thus the emis-
sion noise �i.e., the positive frequency component of the
noise� is equal in this regime to the emission excess noise
�no equilibrium component for the emission noise�. Second,
Eq. �18� can be simplified in this frequency range: the emis-
sion noise coincides with the backscattering noise SB, up to
factors of the nonlocal pure conductivity:

Snm�� � 0� = � h

e2�2

Gni
0 ���SB���Gim

0 �− �� . �23�

Thus the emission noise has access directly to the impurity
backscattering noise. This is a great advantage with respect
to the symmetrized noise, in particular for the case of a non-
chiral system for which the backscattering noise cannot be
simply inferred from the chiral current correlations, as it is
the case for a chiral system �e.g., the edges of a fractional
quantum Hall liquid� presented in Ref. 22.

V. PERTURBATIVE RESULTS

Up to this point we have presented exact formal expres-
sions for the ac conductance and finite-frequency noise, for
arbitrary temperature and voltage, and for an arbitrary loca-
tion and strength of the backscattering center. We can easily
expand these expressions perturbatively in the weak back-
scattering regime. From an experimental perspective, this is
the situation which is most relevant, since it is possible to
fabricate ballistic quantum wires and carbon nanotubes for
which weak backscattering is due either to imperfect con-
tacts, or can be induced by an STM tip. From a theoretical
perspective, the noise at zero frequency in a chiral LL has
been calculated exactly using Bethe ansatz for an arbitrary
strength impurity, and it was shown that the perturbative
analysis describes within a few percent accuracy the noise
for barriers with transmission larger than 50%, up to very
low voltages.18 In general, the validity of perturbation theory
requires the existence of an energy scale which cuts the
renormalization group �RG� flow for the effective back-
scattering amplitude at a not too large value. This energy
scale is usually taken to be the voltage or the temperature.
However, if the length of the wire is short enough, the energy
scale associated with the length of the wire can play this role,
and one can study the system up to low enough values of the
applied voltage.

One can also analyze the strong backscattering regime
perturbatively, as it has been done in Ref. 22 for chiral LL,
but we do not focus on this regime here. We should also note
that our results are valid for an arbitrary position of the im-
purity, and even for an arbitrary extended disorder configu-
ration. Nevertheless, here we restrict ourselves to a localized
impurity at the center of the wire �i.e., xi=0�. The analysis of
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an arbitrary realization of disorder, as well as of the arbitrary
strength of the impurity, requires a different analysis which is
beyond the scope of this work.

A. ac conductance

We now evaluate the differential ac conductance and the
nonsymmetrized noise perturbatively in the case of small
impurity backscattering �, up to order �2. The real part of the
excess ac conductance, �G11���=G11���−G11��� �V=0, is
plotted in Fig. 2. The advantage of analyzing the excess con-
ductance is that we have access directly to the impurity-
generated terms proportional to �2. We do not give here the
conductance in the linear regime G11��� �V��. The inconve-
nience of analyzing it is that it contains both impurity-
induced terms of order �2, and terms that are independent of
the impurity �of order �0�, which have been already studied
in Refs. 16 and 33, and that will dominate over the impurity-
induced terms.

The excess ac conductance vanishes for g=1, consistent
with the linearity of a noninteracting system. However, it is
nonzero in the presence of interactions, consistent with the
strong nonlinearity of an interacting system in the presence
of an impurity.

While not depicted here, we also find that the real part of
the total diagonal conductance Gnn is a positive quantity at
all frequencies. Consequently, from Eq. �21� we expect that
the nonsymmetrized noise Snn will be reduced with respect to
the symmetrized noise Snn

+ for positive frequencies �emission
part�, whereas at negative frequencies �absorption part� it is
increased. We begin our analysis with the zero-frequency
limit, and consequently analyze the dependence of the noise
on frequency.

B. Zero-frequency noise

Measurements of the zero-frequency noise have been
available for quite some time in FQHE edge states.1 More-
over, they have recently been performed also for
nanotubes.19,39 We calculate the zero-frequency noise pertur-
batively, up to order �2, and we find

Snm�� = 0� = eIB coth� eV

2kBT
� + 2kBT� e2

h
− 2

�IB

�V
� ,

�24�

in agreement with Refs. 12 and 19. This formula looks like
the zero-frequency noise in a noninteracting wire,40 but in-
teraction effects are present in a nonlinear dependence of IB
with the applied voltage.18 In the limit of kBT�eV, the zero-
frequency excess noise is simply given by the electron
charge multiplied by the backscattering current: eIB.41

The evaluation of the backscattered current is presented in
Appendix, Sec. 3, and discussed in detail in Refs. 13 and 36.
In Fig. 3, we plot the zero-frequency excess noise �Snm��
=0�=Snm��=0�−Snm��=0� �V=0 as a function of voltage. At
zero temperature, we observe periodic modulations of the
noise which are attenuated when the temperature increases.
Besides, for voltages smaller than �L �in the short-wire
limit�, both the noise and the backscattered current increase
linearly with voltage. Notice that this is in qualitative agree-
ment with the experimental measurements,39 since we expect
such behavior even for more complicated impurity distribu-
tion. This regime is denoted in Fig. 3 by A. We expect in this
regime the frequency dependence of the noise to be also
similar to that of a noninteracting system. The linear depen-
dence of the current in this regime can be argued using Eq.
�A11� in Appendix, Sec. 3. The integral in Eq. �A11� is domi-
nated by times smaller, and on the order of a few 1 /�L. If
eV���L, eVt /��1 and sin�eVt /�� can be expanded lin-
early in V, thus justifying the linear dependence.

For voltages larger than ��L we see that the system ap-
proaches the infinite-wire limit, while exhibiting finite-size
oscillations whose envelope follows the infinite-wire charac-
teristic power-law dependence.18 In Fig. 3, we denote this
regime by B. We expect that in this limit the finite-frequency
noise exhibits finite-size features overlapped with infinite-
wire characteristics.
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For temperatures larger than ��L, the finite-size features
disappear, and we see that the behavior of the noise re-
sembles the noise of an infinite interacting wire: for voltages
larger than the temperature the noise decreases as a power
law with respect to the applied voltage �regime C�. A similar
power-law decay of the zero-frequency noise at large volt-
ages was predicted and observed experimentally in Ref. 18.

C. Finite-frequency nonsymmetrized noise

In the following we analyze the nonsymmetrized excess
noise at finite frequency. As discussed in Sec. V B, we focus
mainly on the excess noise, as being both the quantity most
relevant in an experiment, the one that incorporates most of
the information about the electronic interactions in a system,
and the one that is directly proportional to the effects of the
impurity. Our most important observation is that the nonsym-
metrized excess noise, while being symmetric in a noninter-
acting system, becomes asymmetric in the presence of inter-
actions, the amount of asymmetry providing an insight into
the strength of the electron-electron interactions. A similar
behavior was obtained in a two-dimensional electron gas in
the fractional quantum Hall regime.22

We study two relevant limits corresponding to the A and B
regimes described in Sec. V B: a very short tube, when we
expect the physics to be dominated by the noninteracting
metallic leads, and a very long tube, when we should be able
to retrieve some of the infinite Luttinger liquid features. We
restrict ourselves to the regime where the temperature is
much smaller than all the other energy scales in the problem,
even though we could as well include arbitrary temperature,
which is however not necessary if one is interested by the
quantum regime.

1. Short-wire limit

In the first �A� case, when ��L=�vF /gL�eV, the non-
symmetrized excess noise deviates from the noninteracting
limit, as can be seen from Fig. 4, but the deviations, espe-
cially for the case of the emission noise, are small. A similar
behavior was obtained for the symmetrized noise, either in
the same geometry,13 or for a short carbon nanotube weakly
coupled to a STM tip.24

We also see that, at zero temperature, the nonsymmetrized
excess noise cancels at positive frequencies for ���eV, for
all values of g. However, the nonsymmetrized excess noise
cancels for negative frequencies ���−eV only when g=1,
i.e., in the noninteracting limit. This is because the detection
of the current fluctuations at positive frequencies requires the
emission of photons, while at negative frequencies it requires
the absorption of photons. Thus for energies larger than eV,
the emission noise for a noninteracting system vanishes as an
electron coming from the source does not dispose of the
corresponding empty states in the drain to emit a photon.31,42

In the presence of interactions, the problem is more compli-
cated, and the symmetrized noise analyzed in Refs. 11 and
13 does not allow to draw any conclusion on the issue. For
the nonsymmetrized noise in chiral LL such as the FQHE
edges,22 the emission noise vanishes at frequencies higher
than geV /� �probably due to the lowest-order perturbative
nature of the calculation, which takes into account only
single quasiparticle processes�. On the other hand, here we
find that for a nonchiral LL, even in the presence of interac-
tions, the emission noise vanishes for frequencies larger than
eV /� �the absorption noise however does not vanish for fre-
quencies smaller than −eV /� due to the contribution of the
ac conductance �see Eq. �20��.

The deviation from the noninteracting limit decreases
with decreasing the length of the tube, or with increasing g.
This is due to finite-size effects which dominate in the case
of a short wire, and in the extreme limit we expect the sys-
tem to behave like an infinite noninteracting wire. While for
the values presented in Fig. 4 the difference is not substantial
for the emission component, it signals already that even in
the presence of the metallic leads, the nonsymmetrized ex-
cess noise becomes asymmetric due to the effect of the in-
teractions in the wire.

One should note the emergence of the regions where the
nonsymmetrized excess noise becomes negative. This is con-
trary to the original intuition that the noise increases when a
dc voltage is applied. However, a negative symmetrized ex-
cess noise has already been noted for the case of LL,13 or for
semiclassical systems.43,44 Here we see that the emission
noise S11 remains positive, in agreement with the intuitive
understanding. This result is obtained perturbatively, but we
believe that it will remain valid at all orders in perturbation
theory.45 On the other hand, we see that the absorption noise
can become negative, and we can understand this as stem-
ming from the generalized Kubo formula,30,31 which relates
the difference between the emission noise and the absorption
noise to the ac conductance. The negativity of the absorption
noise will yield regions where the symmetrized excess noise
can also become negative.

2. Long-wire limit

The effects become much more pronounced in the oppo-
site �B� limit, ��L=�vF /gL�eV �the long-tube limit�. In
this case a large number of oscillations can be observed �see
Fig. 5� for frequencies inferior to the Josephson frequency
eV /�. The period of these oscillations is given by 2	�L, and
they arise from the quasi-Andreev processes discussed in
Sec. I. It is clear from Fig. 5 that the amount of asymmetry
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between the excess emission noise and the excess absorption
in this situation is very large. While the excess emission
noise goes to zero at frequencies larger than the Josephson
frequency, the excess absorption noise displays sharp oscil-
lations for frequencies smaller than −eV /�. Also, the magni-
tude of the oscillations, even at frequencies larger than
−eV /�, is much larger for the absorption component.

Other signatures can be extracted from the oscillations of
the noise with respect to frequency. For example if the im-
purity is in the center of the wire, the period of the oscilla-
tions 2	vF /gL is inversely proportional to the value of the
fractional charge g. Also, in the long-tube limit, as depicted
in Fig. 5, the envelope of the oscillations coincides exactly
with the noise of an infinite LL with the same interaction
parameter g �the dotted line�. We should note that these re-
sults are strongly affected by the position of the impurity,
such that, if the impurity is not exactly in the middle, the
dependence of the noise on frequency is more complicated,
and the shape of the envelope changes. Nevertheless, we
have checked that if the impurity is at one of the contacts, the
periodicity of the oscillations still holds but doubles, and the
envelope of the oscillations corresponds to an infinite Lut-
tinger liquid with an effective gc=2g / �g+1�.16 However, as
discussed in Sec. I, the position of the impurity should be
controllable using an STM tip, and the bulk impurity should
dominate over the contact ones.16,27

We should note that, in agreement with previous studies,13

the position of the Josephson singularity is at eV /� at zero
temperature, and the form itself of the singularity is cusplike,
same as for the noninteracting system. This can be seen ana-
lytically by taking the limit �eV /�−����L. The integrals
responsible for the noise in this limit are dominated by times
smaller or on the order of a few 1 /�L, for which the oscil-
latory terms of the form sin��t−eVt /�� become linear in
��−eV /��, hence the cusp singularity is at �=eV /�.

VI. DISCUSSION

A. Average nonsymmetrized noise

Here we show that direct access to the value of the charge
fractionalization can be obtained from the finite-frequency

emission noise in the long-wire limit. Thus along the lines of
Refs. 13 and 22, we can analyze the average of the nonsym-
metrized excess noise over the first half period of oscillations
when the impurity is in the middle of the wire:

��Snm�� =
1

��
�

0

��

d��Snm��� , �25�

where ��=	�L=	vF /gL. The period of oscillations de-
pends on the interaction parameter g as depicted in Fig. 6.
While the zero-frequency noise is given by eIB, we find that
the average of the emission noise over the first half period of
oscillations is geIB in the regime eV� �kBT ,��L� �see inset
of Fig. 6�. This is less restrictive than the average of the
symmetrized noise presented in Ref. 13. A measurement of
the noise over one half period of oscillations should thus
make one able to extract the value of the fractional charge in
the interacting wire. This should be easier to achieve experi-
mentally than the measurement of the envelope of the oscil-
lations, as the noise frequencies required are much smaller.

As can be seen from Fig. 6 the average of the emission
noise is more accurate than the average of the symmetrized
excess noise, thus allowing the identification of the value of
the fractional charge for a larger region in parameter space.
We should also note that if the impurity is not exactly in the
middle of the wire, and neither at the contact, the frequency
average is not strictly equal to the value of the fractional
charge, but depends on the impurity position. A similar de-
pendence was observed also for the average of the symme-
trized noise calculated in Ref. 13. In order to be able to use
the present formalism to describe in detecting the value of
the fractional charge, one can use an STM tip to make an
impurity in the center of the wire that will dominate the
scattering. The situation in which the two contacts between
the wire and the metallic lead are the main source of back-
scattering will be examined in a separate work.
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B. Nonsymmetrized noise on a gate

As mentioned in Sec. II, in the case of an ac current
flowing through the system, the conservation of current does
not simply hold in the usual form for dc transport I1+ I2=0.
For time-dependent transport, the continuity equation �xI=0
must be replaced by �t�+�xI=0, and we have16

I1�t� + I2�t� = − �
−L/2

L/2

dx��t��x,t� = − Q̇�t� , �26�

such that the sum between the currents at the two contacts is
related to Q, the charge accumulated inside the wire. This
charge can be measured using a nearby gate capacitatively
coupled to the wire, such that the charge on the gate is equal
and opposite to Q. The current flowing through the gate is

thus I3�t�=−Q̇�t�=−I1�t�− I2�t�, ensuring formally current
conservation.

Along the same lines with Eq. �7�, we can define a gate ac
conductance G3m��� as G3m���=�dtei�tG3m�t�, where

G3m�t − t�� = � �I3�t�
�Vm�t���vm=0

�27�

for m=1,2. Thus G3m���=−G1m���−G2m���, while the total
gate conductance is defined as

G33��� � − G31��� − G32��� .

For a clean wire we can see easily that G11
0 ���=G22

0 ���
and G12

0 ���=G21
0 ���, thus the two conductivities G31

0 and G32
0

are equal, and by measuring the gate conductance one can
extract the ideal conductance of the wire.16,33

Moreover, if the impurity is in the middle �xi=0�, such
that one does not break the initial mirror symmetry of the
problem with respect to the origin, we find that the gate
conductance is unchanged by the presence of the impurity
G3m

0 ���=G3m���, for m=1,2 ,3. This should be true also for
any impurity distribution conserving this mirror symmetry,
thus for a Gaussian extended disorder. Thus the gate offers
the advantage that for a symmetric impurity distribution, one
can extract directly the ideal conductance of a one-
dimensional system. In a realistic experiment however, the
contacts are often not perfect and can be asymmetric. In the
case of asymmetric contacts the conductance of the gate is no
longer dominated by the bulk impurity, but is proportional to
the asymmetry between the two contacts. This situation will
be examined elsewhere.

Similarly, the nonsymmetrized noise on the gate is given
by

S3��� = �
−



dtei�t��j3�0��j3�t�

= �
−



dtei�t���j2�0� + �j1�0����j2�t� + �j1�t�� .

�28�

It leads to

S3��� = S11��� + S22��� + S12��� + S21��� . �29�

We can also define a nonsymmetrized excess gate noise as

�S3��� = S3��� − S3����V=0. �30�

We find also that, when the impurity lies exactly at the center
of the wire, �S11���=�S22���=−�S12���=−�S21���, and
the excess gate noise cancels. The total noise in this situation
is thus given by the FDT: S33���=−2��N���Re�G33

0 ����.

C. Nonsymmetrized noise in a nanotube

The analysis in Sec. VI B was appropriate for a quantum
wire with a single channel of conduction. However, realistic
one-dimensional conductors such as carbon nanotubes for
which measurements of the zero-frequency current-current
fluctuations are now available19,39 have more channels of
conduction. For example, a carbon nanotube has four chan-
nels of conduction, out of which one with an effective inter-
action parameter g�0.25e.46 If the impurity is in the middle
of the wire, i.e., xi=0, we can see that the period of the noise
oscillations depends only on the fractional charge g of the
charge sector, and is given by 2	vF /gL. In the limit where
the tube is not too long, a slight asymmetry between the
excess emission noise and excess absorption noise will start
developing, but this asymmetry will not be as pronounced as
in the case of a single-channel quantum wire, due to the
existence of the four channels of conduction. In the long-
tube limit the effect of the extra channels of conduction will
be visible in the form of the envelope of the oscillations,
where the value of g which determines the exponent of the
power-law dependence will be renormalized to g�= �g
+3� /4�0.8. This limit is presented in Fig. 7. On the other
hand, the averaging over the first half period of the oscilla-
tions will retrieve solely the value of the fractional charge of
the charge mode g=0.25.

D. Experimental relevance

We should now make some comments on the accessibility
of the two regimes discussed above in an experiment. For a
nanotube of a micron length for example, 	�L=vF /gL
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�10 THz. This corresponds to ��L /kB�20 K. Thus, re-
gime A, as specified in Fig. 3, is achieved for T�20 K, and
V�2 meV, with kBT�eV; thus temperatures on the order of
0.1 K and voltages on the order of 0.1 mV would be appro-
priate. The temperature and voltage can be higher if the tube
is shorter, as it is the case, for example, in Ref. 39, where
�L�15 meV, and the linear regime occurs for V on the
order of mV. In the frequency dependence of the noise the
Josephson frequency would appear at frequencies on the or-
der of THz.

On the other hand, the regime B described in Fig. 5 occurs
for the same range of temperatures, but for larger voltages,
for example for the case discussed above V�10–100 meV,
depending on the length of the wire. In this regime the Jo-
sephson singularity occurs for frequencies of �50 THz.
This range of frequencies is much harder to achieve experi-
mentally; also the high voltage required will contribute to the
heating of the sample. While the Josephson frequency is very
high, the oscillations should be, however, visible for frequen-
cies on the order of 10 THz. This is thus the necessary fre-
quency to achieve experimentally in order to retrieve the
value of the fractional charge by performing an average of
the finite-frequency noise. We should note, however, that the
signature of interactions is present in the ac differential con-
ductance and noise even at lower frequencies.

VII. CONCLUSIONS

In this paper we have performed a study of the differential
ac conductance and the finite-frequency noise in a quantum
wire connected to metallic leads in the presence of a single
impurity. The single impurity scenario may correspond to
either a bulk impurity or to an impurity located at one of the
contacts. While in general nanotubes are clean, and most of
the backscattering comes from the imperfect contacts, the
situation of a single central impurity can be achieved experi-
mentally using, for example, an unbiased STM tip. In this
case the effect of the bulk impurity dominates over the effect
of the impurities at the contacts. Here we review some of the
main results, which are also presented in more detail in Sec.
I.

We have found that even in the presence of leads, many
signatures of interactions are still present in the behavior of
the ac differential conductance and the noise, and could be
observed experimentally. We have first focused on the excess
ac conductance, which is defined as the difference between
the corresponding values at finite and zero voltage, and
which is proportional to the impurity strength. We have
found that, while being zero for a linear system �in the ab-
sence of interactions�, the excess ac differential conductance
has a rich nonlinear behavior for an interacting nonchiral LL.
Another important observation that we made was the strong
asymmetry in the finite-frequency excess noise: the emission
and the absorption components of the excess noise, while
identical in the absence of interactions, are different if inter-
actions are present in the wire. We explained this asymmetry
by the nonlinearity in the system, showing that the difference
between the emission and the absorption noise is given by
the real part of the excess differential ac conductance of the
wire.

We have also established exactly a few other interesting
facts about the nonsymmetrized which showed the value of
studying this quantity experimentally, instead of the symme-
trized noise. For instance, the emission noise was shown to
be equal to the partition noise in the quantum regime. By
carrying on a perturbative analysis to lowest order in the
impurity strength, we have shown that at low temperature the
noise exhibits oscillations whose periodicity is inversely pro-
portional to the value of the fractional charge. The existence
of the oscillations is a crucial difference between the LL
model and an alternative model, the dynamical Coulomb
blockade model. When the length of the tube is much larger
than the inverse of the applied voltage, the envelope of the
oscillations is given by the form of the nonsymmetrized
noise for an infinite LL with the same interaction parameter.
We have found that an average over the first half period of
oscillation in the long-tube limit gives direct access to the
value of the fractional charge g with more accuracy and less
restrictions than the analysis of the symmetrized noise.

We have discussed also the presence of a gate, and have
shown that for any disorder configuration with mirror sym-
metry the gate ac conductance is not affected by disorder, but
is equal to the conductance of the clean wire, which could
give access to the interaction parameter. We have analyzed
how our results change in the presence of multiple channels,
such as it is the case for a carbon nanotube. Last but not least
we have discussed the experimentally relevant values of the
parameters in our analysis.
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APPENDIX

1. Functions GB and SB

The function GB is defined by

GB��� =
1

��
�

0



dt�ei�t − 1���jB�t�, jB�0�� , �A1�

while SB is defined as

SB��� � �
−



dtei�t��jB�0��jB�t� , �A2�

where jB is the backscattering current operator at the back-
scattering site xi defined in Eq. �16�.

The evaluation of GB and SB perturbatively up to second
order in � gives22

GB��� =
1

2��

e2�2

�2 �
0



dt�ei�t − 1�cos� eVt

�
��

s=�

se4	C�xi,st;xi,0�,

�A3�

where the two-point functions C are presented in Appendix,
Sec. 2. The sum over s can be expressed as
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�
s=�

se4	C�xi,st;xi,0� = 2i sin�4	 Im�C�xi,t;xi,0���e4	 Re�C�xi,t;xi,0��.

�A4�

Similarly we can write SB���= �fA���−��GB���
−��GB�−��� /2, where

fA��� = i
e2�2

2�2 �
m=�1

coth��� + meV

2kBT
�

� �
0



dt sin��� + meV/��t��
s=�

se4	C�xi,st;xi,0�.

�A5�

2. Green’s function CR

The Green’s function CR is given by the Fourier trans-
form:

C̃R�x,y,�� � �
−



ei�tCR�x,t;y,0�dt , �A6�

where

CR�x,t;y,0� = 2i��t�Im�C�x,t;y,0�� , �A7�

and C=CGS+CTF. The ground state �GS� and thermal fluctua-
tions �TF� contributions are given by13

CGS�x,t;y,0� = −
g

4	� �
m�Zeven

��m� ln� �a + i��2 + ��r + m�2

a2 + m2 ��
+ � �

m�Zodd

��m��ln� �a + i��2 + �m − �R�2

a2 + �m − �R�2 �
+

1

2
ln� �a2 + ��R + m�2�2

�a2 + �2� + m�2��a2 + �2� + m�2���� ,

�A8�

and

CTF�x,t;y,0� = −
g

4	� �
m�Zeven

��m��
r=�

ln� sinh�	��� + r��r + m���
	��� + r��r + m��

	�m

sinh�	�m��
+ �

m�Zodd

��m��
r=�

ln� sinh�	��� + r�m − �R���
	��� + r�m − �R��

	��m − �R�
sinh�	��m − �R���

+ �
m�Zodd

��m� ln� sinh2�	���R + m��
�	���R + m��2

	��2� + m�
sinh�	��2� + m��

	��2� + m�
sinh�	��2� + m���� , �A9�

where �= �1−g� / �1+g�, �=x /L, �=y /L, �r= �x−y� /L, �R
= �x+y� /L, �= t�L, �=kBT /��L, and a=�L /�c is the �di-
mensionless� inverse cutoff.

3. Backscattering current

The averaged backscattering current is given by13

IB =
e�2

4�2�
−



dteieV/�t�
s=�

se4	C�xi,st;xi,0�. �A10�

With the help of the parity properties of the Green’s func-
tion, it can be shown that the imaginary part of the back-
scattering current cancels. As a consequence, IB is purely real
and is given by

IB = −
e�2

2�2�
−



dt sin� eVt

�
� sin�4	 Im�C�xi,t;xi,0���

�e4	 Re�C�xi,t;xi,0��. �A11�

The behavior of the backscattered current was analyzed in
detail in Refs. 13 and 36.
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